Skip to main content
Log in

The experimental investigation concerning the heat transfer enhancement via a four-point star swirl generator in the presence of water–ethylene glycol mixtures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, a new swirling flow generator is studied which aims to enhance the convective heat transfer rate in a heat exchanger tube. This device has a four-point star cross section. The study mainly investigates the effect of swirl generator on heat transfer rate and pressure drop along the test tube which is under a constant and uniform heat flux. The working fluid in the experiments is the water–ethylene glycol mixtures with Prandtl numbers ranging from 5 to 150 at different Reynolds numbers from 12,000 to 27,000. The results clarify the potential of the applied swirl generator to make a significant enhancement in the heat transfer rate with a satisfactory rise in the pressure drop. Based on studies of different cases, it is found that the swirl generator enhances the heat transfer and also the pressure drop up to 75% and 55%, respectively. The results show that the swirl generator is more efficient at lower Reynolds numbers. Moreover, the results lead to this finding that the swirl generator has a better performance for water and consequently for water–ethylene glycol mixtures with lower ethylene glycol percentage. In other words, the swirl generator has a better performance for the working fluids with a lower Prandtl number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\(A\) :

Surface area (\({\text{m}}^{2}\))

ave:

Average

\(b\) :

Bulk temperature

conv:

Convective

\(D\) :

Diameter of the test tube (m)

e :

Effective

\({\text{Eff}}\) :

Thermal performance efficiency

EG:

Ethylene glycol

\(f\) :

Friction factor

fl:

Fluid

\(h\) :

Heat transfer coefficient (W m−2 K−1)

in:

Inlet

\(k\) :

Thermal conductivity (W m−1 K−1)

\(L\) :

Dimensionless tube length

\(\dot{m}\) :

Mass flow rate (\({\text{m}}^{3} \,{\text{s}}^{ - 1}\))

\({\text{Nu}}\) :

Nusselt number

out:

Outlet

\(p\) :

Plain tube

\(p\) :

Pressure (kg m−1 s−2)

\(\Pr\) :

Prandtl number (\(\mu \,C_{\text{p}} /k\))

\(Q\) :

Heat transfer (W)

\(q^{\prime\prime}\) :

Wall heat flux (W m−2)

\(R\) :

Radius of the test tube (m)

\(r\) :

Radial position (radius) (m)

\(\text{Re}\) :

Reynolds number (\(= u_{\text{in}} \,D/\upsilon\))

ref:

Reference

\({\text{SG}}\) :

Swirl generator

\(T\) :

Twist angle

W :

Water

w :

Wall

\(\varepsilon\) :

Tube roughness (m)

\(\rho\) :

Density (kg m−3)

References

  1. Jafari M, Farhadi M, Sedighi K. Single walled carbon nanotube effects on mixed convection heat transfer in an enclosure: a LBM approach. Transp Phenom Nano Micro Scales. 2014;2:14–28.

    Google Scholar 

  2. Rahbari I, Mortazavi F, Rahimian MH. High order numerical simulation of non-Fourier heat conduction: an application of numerical Laplace transform inversion. Int Commun Heat Mass Transf. 2014;51:51–8.

    Article  Google Scholar 

  3. Yang L, Du K. A comprehensive review on the natural, forced, and mixed convection of non-Newtonian fluids (nanofluids) inside different cavities. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08987-y.

    Article  Google Scholar 

  4. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2019;135:305–23.

    Article  CAS  Google Scholar 

  5. Jafari M, Aghajani-Delavar M, Farhadi M, Naysari A. Wall shape effects on convection heat transfer over a corrugated channel. Heat Transf Asian Res. 2016;45:101–22.

    Article  Google Scholar 

  6. Liu S, Sakr M. A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renew Sustain Energy Rev. 2013;19:64–81.

    Article  Google Scholar 

  7. Pashaie P, Jafari M, Baseri H, Farhadi M. Nusselt number estimation along a wavy wall in an inclined lid-driven cavity using adaptive neuro-fuzzy inference system (ANFIS). Int J Eng Trans A Basics. 2012;26:383–92.

    Google Scholar 

  8. Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on the thermal–hydraulic performance of a nanofluid flow through a tube. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08683-x.

    Article  Google Scholar 

  9. Farshad SA, Sheikholeslami M. Simulation of exergy loss of nanomaterial through a solar heat exchanger with insertion of multi-channel twisted tape. J Therm Anal Calorim. 2019;138:795–804.

    Article  CAS  Google Scholar 

  10. Sheikholeslami M, Sajjadi H, Delouei AA, Atashafrooz M, Li Z. Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles. J Therm Anal Calorim. 2019;136:2477–85.

    Article  CAS  Google Scholar 

  11. Jafari M, Farhadi M, Sedighi K. An experimental study on the effects of a new swirl generator on thermal performance of a circular tube. Int Commun Heat Mass Transf. 2017;87:277–87.

    Article  Google Scholar 

  12. Sheikholeslami M, Jafaryar M, Saleem S, Li Z, Jiang Y. Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. Int J Heat Mass Transf. 2018;126:156–63.

    Article  CAS  Google Scholar 

  13. Omidi M, Farhadi M, Darzi AAR. Numerical study of heat transfer on using lobed cross sections in helical coil heat exchangers: effect of physical and geometrical parameters. Energy Convers Manag. 2018;176:236–45.

    Article  CAS  Google Scholar 

  14. Jafari M, Farhadi M, Sedighi K. Thermal performance enhancement in a heat exchanging tube via a four-lobe swirl generator: an experimental and numerical approach. Appl Therm Eng. 2017;124:883–96.

    Article  Google Scholar 

  15. Sheikholeslamia M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;124:980–9.

    Article  Google Scholar 

  16. Liu W, Bai B. Swirl decay in the gas-liquid two-phase swirling flow inside a circular straight pipe. Exp Therm Fluid Sci. 2015;68:187–95.

    Article  Google Scholar 

  17. Omidi M, Farhadi M, Jafari M. Numerical study on the effect of using spiral tube with lobed cross section in double-pipe heat exchangers. J Therm Anal Calorim. 2018;134:2397–408.

    Article  CAS  Google Scholar 

  18. Kreith F, Sonju OK. The decay of turbulent swirl in a pipe. J Fluid Mech. 1965;22:257–71.

    Article  Google Scholar 

  19. Aydin O, Avci M, Markal B, Yazici MY. An experimental study on the decaying swirl flow in a tube. Int Commun Heat Mass Transf. 2014;55:22–28.

    Article  Google Scholar 

  20. Duangthongsuk W, Wongwises S. An experimental investigation of the heat transfer and pressure drop characteristics of a circular tube fitted with rotating turbine-type swirl generators. Exp Therm Fluid Sci. 2013;45:8–15.

    Article  CAS  Google Scholar 

  21. Duangthongsuk W, Wongwises S. Comparison of the heat transfer performance and friction characteristics between fixed and rotating turbine-type swirl generators fitted in a small circular tube. Exp Therm Fluid Sci. 2013;50:222–8.

    Article  Google Scholar 

  22. Garcia A, Solano JP, Vicente PG, Viedma A. Enhancement of laminar and transitional flow heat transfer in tubes by means of wire coil inserts. Int J Heat Mass Transf. 2007;50:3176–89.

    Article  Google Scholar 

  23. Kurtbas I, Durmu A, Eren H, Turgut E. Effect of propeller type swirl generators on the entropy generation and efficiency of heat exchangers. Int J Therm Sci. 2007;46:300–7.

    Article  CAS  Google Scholar 

  24. Kurtbaş I, Gülçimen F, Akbulut A, Buran D. Heat transfer augmentation by swirl generators inserted into a tube with constant heat flux. Int Commun Heat Mass Transf. 2009;36:865–71.

    Article  Google Scholar 

  25. Gul H, Evin D. Heat transfer enhancement in circular tubes using helical swirl generator insert at the entrance. Int J Therm Sci. 2007;46:1297–303.

    Article  Google Scholar 

  26. Biegger C, Sotgiu C, Weigand B. Numerical investigation of flow and heat transfer in a swirl tube. Int J Therm Sci. 2015;96:319–30.

    Article  Google Scholar 

  27. Webb RL. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. Int J Heat Mass Transf. 1981;24:715–26.

    Article  Google Scholar 

  28. Kline SJ, McClintock FA. Describing uncertainties in single-sample experiment. ASME Mech Eng. 1953;75:3–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jafari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, M., Farajollahi, A. & Gazori, H. The experimental investigation concerning the heat transfer enhancement via a four-point star swirl generator in the presence of water–ethylene glycol mixtures. J Therm Anal Calorim 144, 167–178 (2021). https://doi.org/10.1007/s10973-020-09408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09408-1

Keywords

Navigation